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Abstract 

Predictive modelling of species’ distributions is an important tool in biogeography, evolution, ecology, conservation, and invasive-species 
management. In this study we applied four different algorithms: Mahalanobis Distance, Domain, GARP and MAXENT, using them to 
predict the potential distribution of Limnoperna fortunei, a freshwater mussel native to Southeast Asia and a major fouling pest of water 
supply systems in Hong Kong, Japan, and South America. For model input, we compiled native and invaded occurrence data from Asia (71 
points) and South America (248 points) from the literature and BIOCLIM’s environmental layers related to air temperature and precipitation. 
To evaluate model quality we used different “training” and “test” data sets. On the Mahalanobis Distance and Domain algorithms, three sets 
of training data were used: 1) Asia points; 2) South America points; 3) Asia and South America points. For MAXENT the combinations 
were: 1) South America points (25% test data/75% training data); 2) Asia points (25% test data/75% training data); 3) South America 
training data/Asia test data; 4) Asia training data/ South America test data; 5) Asia + South America points (25% test data/75% training 
data). Comparing the responses of the four types of algorithms used, it was found that MAXENT was the most conservative model (i.e. it 
produced a smaller area of suitable habitats) followed in order by GARP, Domain and Mahalanobis Distance, which proved to be the widest. 
In general, the best results corresponded to models in which the points of occurrence covered a greater environmental variability 
(Asia+South America 25% test data/75% training data). They showed better performance for predicting correctly the occurrence of regions 
already known to host the species. An ensemble map was produced based on the best scenarios for each algorithm. This tool performed well 
in assessing the potential global distribution of L. fortunei even though it was generated from climatic macro variables without the use of 
locale-specific abiotic variables, which are more difficult to obtain. 

Key words:  invasive species, golden mussel, spatial distribution models, niche modelling 

 
Introduction 

Species Distribution Models (SDMs) have the 
objective of characterizing the ecological niche 
of a species and projecting it within geographical 
space. The maps of potential distribution thus 
generated are useful, for example, in forecasting 
the capacity of invasion of exotic species (Rödder 
et al. 2009). According to Kluza and McNyset 
(2005) the modelling of a spatially explicit 
ecological niche depends on the supposition that 
the ecological niche of a species (in the Grinnell 
1917 sense) offers a stable restriction on its 

geographical distribution and that this current 
distribution contains sufficient information for 
understanding the restriction (Peterson 2003). In 
addition to the environmental conditions, other 
factors also can influence the distribution of a 
species, for example, biotic relationships and its 
capacity of dispersion - either by means of its 
own movements or the dispersion of propagules 
by external agents, as this element determines 
which parts of the world are accessible to the 
individuals of the species (Soberón 2007). In the 
modelling of the potential spatial distribution, 
nevertheless,  the  potential  niche for the species 
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Figure 1. Points of occurrence of Limnoperna fortunei. Occurrence data were taken from a database created by Minas Gerais Technological 
Centre – (CETEC 2011) A) South America; B) Asia 

 
of interest is modelled and is represented by the 
whole space corresponding to areas that prove to 
be environmentally suitable for its establishment.  

For the development of models of ecological 
niches (e.g. SDMs), there is a fundamental need 
to understand the natural history of the individual 
being studied. In this case, the species is the 
freshwater bivalve invasive mollusc Limnoperna 
fortunei (Dunker, 1857), popularly known as the 
golden mussel. Its natural habitat is the Chinese 
rivers and streams of Southeast Asia. In recent 
years, as a consequence of the increase in 
international trade and the great flow of craft, this 
mollusc has been expanding its distribution into 
various parts of the world. On the Asian continent, 
in 1965, it invaded the waters of Hong Kong 
reaching Japan, Taiwan, Cambodia, Indonesia, 
Korea, Laos, Thailand and Vietnam (Morton 1996; 
Ricciardi 1998) and in 1991, it also reached the 
waters of South America in the estuary of the 
Río de la Plata river, in the Argentine (Pastorino 
et al. 1993). From then on, it swiftly extended its 
distribution over the South American continent 
(Figure 1A).  

Morton (1977) defined L. fortunei as a species 
adapted for colonization over a wide range of 
aquatic environments, possessing various important 

features for a successful invader, such as a cycle 
of short duration, capacity of rapid growth and 
high fertility, in addition to wide physiological 
tolerance to several abiotic factors that frequently 
limit other aquatic invertebrates (Oliveira et al. 
2011). Its dispersion is closely associated to activity 
of human origin and may also utilize natural 
mechanisms (Darrigran and Damborenea 2006). 
In the larval planktonic phase natural dispersion 
occurs by means of water currents, but in the 
adult and juvenile stages it can also occur by 
fixing to substrates. 

L. fortunei lives on average three years and 
reaches between 3 and 4 cm when adult. It is 
generally found in locations with oxygenated water, 
although it is capable of surviving successfully 
in saline waters up to 3 psu, lakes, humid areas 
and other water courses. However, this species is 
capable of tolerating concentrations ranging from 
distilled water to solutions containing 20% seawater. 
It colonizes waterbody margins and bottom 
substrates in densities that range from 1 to 
150,000 ind/m2. 

The invasion of the golden mussel can cause 
extensive negative impacts for the environment, 
and also economic loss, both caused basically by 
extensive population growth. Change in the diet 
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of native predators, establishment of competition 
for space and food, change in the transparency of 
the water bodies containing denser populations 
of the mussel, creation of new microhabitats and 
the shift of native species are some of the ecological 
impacts related to this invasive bivalve (Darrigran 
et al. 1998; Penchaszadeh et al. 2000; Darrigran 
2002; Mansur et al. 2003; Mansur et al. 2004; 
Darrigran and Damborenea 2005; Sylvester et al. 
2007; Sardiña et al. 2008; Darrigran and Dambo-
renea 2011). Economically, especially in industries 
that use raw water, e.g. the hydroelectric sector, 
the species can result in considerable losses by 
embedding firmly in layers on various submerged 
surfaces, such as wood, rock, plastic and even 
glass (Faria et al. 2006). The resulting biofouling 
blocks pipelines and produces head loss and 
stoppages of the systems for maintenance 
(Darrigran et al. 2007). Moreover the infesting of 
grids and other component structures of hydro-
power plants increases the frequency of cleaning 
operations, which results in stoppages of machines 
and reduction of power generation. Other sectors 
can also be impacted such as water supply, agri-
culture, fluvial transport and aquaculture operations. 

Frequently the detection of an invasive species 
occurs when the level of infestation is already 
quite advanced. Thus the modelling of the potential 
distribution and the risk maps generated represent 
essential tools for directing focussed efforts on 
prevention, control and reduction of the impacts 
caused by the invasion of L. fortunei.  

Objectives 

The idea was to compare the forecasting perfor-
mance of four algorithms commonly utilized to 
generate potential distribution maps: two models 
that utilize environmental distances as metrics: 
Mahalanobis Distance, Domain; the genetic 
algorithm, GARP and an algorithm based on the 
principle of maximum entropy MAXENT. In this 
way it was intended to forecast the dispersion of 
the L. fortunei species on a global scale.  

Material and methods 

Collection of occurrence data 

Part of the L. fortunei occurrence data were 
taken from a database created by researchers of 
the Minas Gerais Technological Centre – (CETEC 
2012) compiled by consulting the scientific 
literature or generated by previous monitoring 
programmes (Campos et al. 2012). Altogether, 319 

georeferenced records of the occurrence of the 
organisms were utilized; 71 points of occurrence 
were in Asia and 248 points in South America. 
These points are illustrated in Figure 1. 

Obtaining environmental data - layers  

The climatic layers utilized to run the distribution 
model were taken from the Worldclim database 
(Global Climate Data http://www.worldclim.org/ 
bioclim ) eight being initially selected from the 
total related to temperature and rainfall: Annual 
Average Temperature, Minimum Temperature of 
the Coldest Month, Average Temperature of the 
Coldest Quarter, Average Temperature of the 
Warmest Quarter, Rainfall of the Wettest Month, 
Rainfall of the Driest Month, Rainfall of the 
Wettest Quarter, Rainfall of the Driest Quarter. 
The layers with a high degree of covariance 
between them (> 0.7) were excluded and only 
one of them was chosen to represent the others. 
Thus only four layers were selected for the 
simulations: Annual Average Temperature, Mini-
mum Temperature of the Coldest Month, Rainfall 
of the Wettest Month and Rainfall of the Driest 
Month. 

Algorithms 

The following algorithms were utilized to 
generate the distribution maps:  

Mahalanobis Distance and Domain  

These two algorithms use different metrics, being 
derivations of the Euclidian distance and are 
available in an “open source” platform denominated 
OpenModeller (http://openmodeller.cria.org.br). 

The Mahalanobis Distance algorithm is 
structured about the existence of an optimum 
ecological point, defined by the construction of a 
centroid for all the points of occurrence in the 
whole ecological space. The smaller the distance, 
the greater is the similarity between regions, and 
the greater the probability of the species being 
present. The Mahalanobis Distance produces an 
envelope in the form of an ellipse around the 
“optimum” within the ecological space. When 
the algorithm is applied to a species potential 
distribution model, the main conditions of a group 
of habitat variables are typically compared with 
each other.  

The Domain, as different from the Mahalanobis 
Distance, is not based on a centroid, but utilizes 
the Gower distance, and because of this has little 
influence on the sampling bias. In the case of 
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this algorithm, there are various envelopes around 
the point. 
 Maximum distance in relation to the 

reference environmental space: 0.1 (above this the 
conditions are considered unsuitable for the presence 
of the species); 
 “Nearest ‘n’ points”: 1 (which means that 

the distance was measured to the nearest point, while 
if it were 0 the environmental distance would be 
measured in relation to the average of all the points 
of occurrence). 

GARP 

GARP (Genetic Algorithm for Rule Set Production) 
– This is a much used algorithm, based on 
artificial intelligence and works by combining 
groups of rules with the intention of generating a 
more precise forecast in the region considered 
(Stockwell and Noble 1992). The rules represent 
a multivariate group of relationships between 
points of occurrence of the species and environ-
mental variables. The algorithm utilizes bioclimatic, 
atomic rules and regression logistics (Stockwell 
and Peters 1999).  

The algorithms utilized above are inserted in 
the OpenModeller Desktop 1.1.0 Platform, and to 
run the models, 50% of the points of occurrence 
were considered for training, 20 models altogether 
being run with a convergence limit of 0.01 and 
400 iterations were made. 

Three classes of models for each algorithm 
were generated according to the origin of the set 
of occurrence data utilized for the simulations, 
totalling 9 models generated: 
 Class 1 “all the points” models: three 

models using all 319 points; 
 Class 2 “Asia points” models: three models 

using only the 71 Asia points; 
 Class 3 “South America points” models: 

three models using only the 248 South America 
points. 

MAXENT 

MAXENT is software based on the principle of 
maximum entropy for modelling of the species’ 
habitats. This algorithm requires the input of a 
set of layers or environmental variables (such as 
rainfall, altitude, etc.), as well as a set of 
georeferenced occurrence locations, to produce a 
distribution model of the species in question 
(Phillips et al. 2006; Elith et al. 2010). The 
MAXENT algorithm estimates the geographical 
distribution of the species looking for the 

probability of distribution of maximum entropy 
(that is, more spread out, in other words, 
approximating more a uniform distribution), 
subject to a set of restrictions that represent the 
incomplete information on the desired distribution 
(Phillips et al. 2006). The 3.3.3k version was 
utilized. In this programme, the information 
available on the distribution of the species is 
presented as a set of variables of real value, 
denominated "features" and the restrictions are 
the expected value of each “feature” which 
should coincide with its empirical average, the 
average value of a set of points of the sample 
collected from the distribution of the species 
(Phillips et al. 2006). Among the possibilities 
present in the MAXENT, ‘linear features’, and 
‘quadratic features’ were utilized, as according 
to Phillips et al. (2006), the joint use of the two 
results in the variance of the environmental 
variable approaching the observed value. 

With the purpose of evaluating the average 
behaviour of the MAXENT algorithm and to 
enable the statistical testing of the differences 
observed in the performances (Phillips et al. 
2006), 10 replications were done for each model. 
In each, the occurrence data were partitioned (by 
random selection) into data for “training” and data 
for “testing”, in accordance with the following 
scheme: 

Model Group 01. All the South America 
(AMS) and Asia (A) input occurrences (75% 
training/25% test);  

Model Group 02. AMS input points (75% 
training/25% test); 

Model Group 03. Asia input points (75% 
training/25% test); 

Model Group 04. AMS input points and 
training / Asia points as test;  

Model Group 05. Asia input points of entry 
and training/AMS points as test.  

All the models to be tested fall into the 
category of presence-only models. Despite 
presence-only models having a place in modern 
ecology, they have potential limitations (Elith et 
al. 2006). According to these authors in many 
instances evaluation focuses on predictive perfor-
mance, some known occurrences are withheld 
from model development and accuracy is assessed 
based on how well models predict the withheld 
data. In presence-only modelling, such withheld 
data are unlikely to provide a general test of model 
accuracy in predicting species’ distributions, 
because the occurrence records often have biases 
in both  geographic and environmental   space and 
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such biases will persist in common resampling 
designs. More importantly, withheld data are 
presence-only, which limits the options for, and 
power of, statistical evaluations of predictive 
performance.  

On the other hand, usually the only reliable 
information on the distribution of organisms is 
from their recorded presence. Contrary to presence 
data, reliable absence data are rare and hard to 
obtain; confirming that a species is absent from a 
locality is a difficult task (Jiménez-Valverde et 
al. 2008) that becomes almost unaffordable in 
the case of the coarse resolution grid cells used 
in most studies. 

Even knowing the limitations of the presence - 
only models, data on real absences were not 
considered in this work. L. fortunei is an invasive 
species, r strategist and with great capacity for 
the colonization of environments, Because of 
this, possible registrations of the absence of this 
species are still difficult to presume to be "real 
absences", as it is in expansion and it could 
colonize other localities. In this way the absences 
cannot be inferred with certainty. In other words, 
in the case of an invasive species like L. fortunei, 
the true potential range of occurrence may differ 
from the realized range because of dispersal 
limitation, competition or other factors, so that 
evaluating model performance is a complex task 
and use of observed absences may be misleading 
(Elith et al. 2006), for instance, true absences could 
be allocated in areas that are either unsuitable for 
the species, or that are suitable but currently do 
not host any population. In this way for the case 
of modelling the potential distribution of an 
invasive species the techniques that play down 
the importance of absence information may be 
better suited to estimation of the ecological and 
distributional potential of the species, whereas 
methods incorporating absence information more 
directly may be more suitable for estimating actual 
distributions of species (Jimenez–Valverde et al. 
2011). 

ArcGIS 

The records of occurrence and their coordinates 
were previously analysed for consistency and 
treated in the software ArcGIS 9.3 of the ESRI 
with the purpose of eliminating the pseudo-
absences generated outside the hydrography, a 
Buffer of 4 km being performed by means of the 
Spatial Analyst tool for the environmental layers 
of the Worldclim. The points that, even so, were 
not  located   within   the   rivers  were   manually 

Table 1. Receiver Operating Characteristics ROC and Area 
Under the Curve AUC for the three classes of models generated 
by the Domain, GARP and Mahalanobis Distance algorithms. 

Algorithms /Classes of models AUC 
Domain: 

Class 1 South America points 0.99 
Class 2 Asia points 0.995 
Class 3 All the points 0.99 

 GARP:  
Class 1 South America points 0.96 
Class 2 Asia points 0.975 
Class 3 All the points 0.95 

 Mahalanobis Distance:  
Class 1 South America points 0.97 
Class 2 Asia points 0.97 
Class 3 All the points 0.96 

relocated to the nearest river. The outputs generated 
by the algorithms were transformed into rasters 
by the ArcMap tool.  

Statistical 

The statistics used to ascertain model quality 
were: Area Under the Curve (AUC) and the 
Receiver Operation Characteristic (ROC) calculated 
by the OpenModeller software itself and also by 
the MAXENT. 

The evaluation of a model is based on the 
forecast performance and includes the determination 
of a minimum threshold of the quantitative value 
produced for the potential presence of a species. 
The sensibility of a model is defined as the 
proportion of true presences in relation to the 
total of presences predicted by the model. The 
specificity is defined as the ratio of true absences 
in relation to the total of absences predicted by 
the model. Thus, the Receiver Operating 
Characteristics (ROC) curve is obtained plotting 
the sensibility against 1 minus the specificity for 
different values of the probability threshold, 
generating an evaluation method of the threshold 
independent of the model (Manel et al. 2001). In 
addition, the area below the curve AUC is 
extensively used in species distribution modelling 
(SDM), characterizing the performance of the 
model, in all possible thresholds, based on a 
single value that can be used as an objective 
approach in comparing different models (Elith et 
al. 2006; Phillips et al. 2006). The AUC varies 
from 0 to 1, where 1 indicates high performance, 
while values lower than 0.5 indicate low 
performance (Luoto et al. 2005; Elith et al. 2006).  

In spite of recent criticisms (e.g., Lobo et al. 
2008), AUC can still be useful comparing models of 
a same species in a similar geographical space. 



M.C.S. Campos et al. 

258 

  
Table 2. Values of the Area Under the Curve (AUC) utilizing ROC. For the five classes of models generated by MAXENT. 

Models AUC 
Group 01. All the input occurrences (AMS+Asia) (75% training/ 25% test) 0.970 
Group 02. AMS input points (75% training/25% test) 0.979 
Group 03. Asia input points (75% training/25% test) 0.992 
Group 04. AMS input points and training / Asia points as test 0.979 
Group 05. Asia input points and training / AMS points as test 0.994 

 
Models with values over 0.75 are considered 

potentially useful (Elith 2002). In this work true 
records of absence were not considered so the 
calculation of the AUC made use of the 
“background” data (also called pseudo-absences) 
chosen uniformly and randomly from the study 
area (Phillips et al. 2006). 

Lastly a composite map from the best predicted 
distributions from each of the four models was 
created. Using the raster calculator tool in ArcGIS, 
the average predicted likelihood of occurrence 
from the best models of the four different 
techniques was calculated and the standard 
deviation of the predicted occurrence, to provide 
a map highlighting where the models agree in 
their predictions, and where they don’t.  

Results  

Performance analysis of the models generated 
by the AUC 

The models generated by the Domain, GARP 
and Mahalanobis Distance algorithms presented 
optimum performance according to the values of 
AUC generated by the Openmodeller (AUC ≥ 
0.95) are presented in Table 1. The Class 3 
Model “all the points" generated by these algorithms 
presented the worst performance, while all the 
Domain models obtained the best performance. 

The models generated by the MAXENT 
presented AUC values over 0.97 (Table 2), also 
indicating good performance. Within the models 
generated by Maxent, those belonging to the 
Group 01 (“all the points”) also presented the 
lowest value for the AUC.  

Potential global distribution of L. fortunei 

The potential global distribution scenarios of the 
invasive bivalve were distinct in accordance with 
the algorithm employed and the nature and size 
of the sample of the information on the real 
presence of the species (Figures 2 to 4). 

 

Figure 2. Potential distribution of L. fortunei, with records of 
presence from Asia, generated by the algorithms Mahalanobis 
Distance (A), Domain (B), GARP (C) and MAXENT (D). 
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Figure 3. Potential distribution of L. fortunei, with records of 
presence from South America, generated by the algorithms 
Mahalanobis Distance (A), Domain (B), GARP (C) and 
MAXENT (D). 

Figure 4. Potential distribution of L. fortunei, with records of 
presence from South America and Asia, generated by the 
algorithms Mahalanobis Distance (A), Domain (B), GARP (C) 
and MAXENT (D). 

 

Mahalanobis Distance 

The models generated by the Mahalanobis 
Distance algorithm gave an AUC between 0.96 
and 0.97. In all the variations utilized regarding 
the input data (Figures 2A to 4A) this algorithm 
was, compared to the others, that which presented 
great flexibility in the forecast of the potential 
distribution area of the invader. In all the 
scenarios considered, the models generated by 

the Mahalanobis Distance, indicate the invasion 
of the bivalve with considerable levels of probability 
even in areas with extreme environmental conditions 
of temperature and/or rainfall, much in excess of 
its limits of tolerance (Ricciardi 1998) and, 
accordingly, unsuitable for its establishment . 

The model generated by Mahalanobis Distance 
with records of Asia (Figure 3A), presented an 
flexible performance and worse than the subsequent 
one (South America), predicting the whole of 
South America and Africa with a high risk of 
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invasion. The model generalized also the occurrence 
of the species in Central and North America, 
primarily in Mexico and the United States and 
Europe, and indicated an average risk of invasion 
in places such as Finland, Norway and Britain 
which climatically would not be very propitious 
for the establishment of the species. This model 
furthermore did not predict a high probability of 
occurrence of the mussel in areas of known 
presence such as China.  

Comparing the performance of the algorithm 
Mahalanobis Distance in relation to the origin of 
the points of occurrence, it can be seen in Figure 
4A that the model generated from the actual 
points of occurrence of L. fortunei in South 
America, was able to predict correctly the 
invasion of Asia, indicating a high probability of 
occurrence in China, which is its native environment 
(Morton 1977), in addition to Japan, South Korea 
(partially) and Taiwan (Ricciardi and Rasmussen 
1998), countries already invaded by the mussel. 
The model also forecasted correctly the invasion 
of South America, in the Plate basin, in the River 
Paraná, which occurred from 1991 on through 
the River Plate estuary and which at present 
reaches the headwaters of the River Paraná 
(Campos et al. 2012). Moreover the model based 
on the records from South America demonstrates 
that extreme areas such as the Sahara Desert and 
Northern Europe possess some chance of invasion, 
something that makes no sense. 

The model produced utilizing all the points of 
occurrence (Figure 4A) demonstrated an inter-
mediate performance in relation to those preceding 
it. This model predicted correctly the existence of 
the mussel in Southeast Asia including South Korea 
and also in South America. Such a model did not 
overestimate the spatial distribution of the species 
such as the model that considered only the Asia 
points, but was more flexible in predicting the 
high risk of invasion in Russia than the model 
based on presence points in South America.  

Domain 

In its turn the models generated by the Domain, 
(Figures 2 to 4B) were less general and visibly 
better than those produced by the Mahalanobis 
Distance. Based on its values of AUC = 0.99 
they can be considered models of high predictive 
accuracy and they predicted the expansion of L. 
fortunei with an expected logic, based on the 
points of occurrence utilized by it.  

 

Figure 5. Maps of the averages (A) and deviations (B) of the best 
scenarios of potential distribution generated by the four 
algorithms utilized (Mahalanobis Distance, Domain, Garp and 
Maxent). 

The model obtained by Domain utilizing only 
records from Asia (Figure 2B) indicated a high 
risk of invasion for certain regions north of the 
Equator such as the Southeast coast of the United 
States, Southern Europe and Southeast Asia 
where it was already expected to be predicted. It 
showed coherently that Canada and the North of 
Asia are places with very low chances of occupation 
by the mussel. The Domain model based on the 
presences of the Asiatic region indicated correctly 
the invasion of South America, although with less 
risk than in countries of the Northern Hemisphere. 
In being based on climatic variables of 
temperature and rainfall the model that utilizes 
records from Asia predicts areas of the USA and 
Mediterranean Europe with greater probability of 
invasion than South America, in the latter’s 
already invaded part. 

This model also predicted expansion to the 
Amazon basin, Central Africa and the West 
Coast of the USA. 

In considering only the true presences of 
South America (Figure 3B), the model Domain 
predicted invasion primarily for the Southern 
Hemisphere and not so well for Southeast Asia, 
which is plausible considering the nature of the 
environmental data inputted, macro climatic 
variables with values related to the Southern Hemi-
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sphere. It demonstrated a massive expansion in 
South America, with the exception of the axis 
corresponding to the Andes (cold and dry) and 
an equatorial area corresponding to the hot region 
and with the maximum average annual rainfall 
levels on the continent, two situations with 
extreme averages and distinct from the average 
environmental conditions related to the points of 
occurrence. It should be further noted that high 
altitudes in South America, as a determinant 
factor of the climate, also contribute to reduce 
the environmental suitability for the species as is 
shown by the low risk indicated for the Andean 
region and the Guiana Highlands. Darrigran et 
al. 2011 show that certain conditions connected 
to the concentration of solids in suspension, 
intermittence of water flow and salinity are some 
aspects that limit the dispersion of Limnoperna 
for the Andean tributaries of the Plate basin in 
the Argentine.  

According to such a model, the mussel will 
still invade the South-Central region of Africa, in 
addition to Mexico, the south of the USA, and 
the Mediterranean region.  

Including the environmental data of the South 
America points and the Asia data (Figure 4B), 
the model generated becomes less restrictive 
than the previous ones increasing its capacity of 
prediction for both hemispheres.  

GARP 

The models generated by this algorithm (Figures 
2 to 4C) tended to be more conservative than 
those based on environmental distances, maintaining 
the areas with great potential of invasion by the 
mussel near to the points of occurrence supplied 
to generate the model and diminishing the degree 
of environmental suitability generally. 

Taking into consideration only the Asia points 
(Figure 2D) the forecast of a high risk of 
invasion provided by this model was restricted in 
the majority of cases to areas with a subtropical 
climate north or south maintaining a relation with 
the average weather conditions of the occurrence 
data. It was able to predict the native region of 
the bivalve although it limited the area of invasion 
even in Southeast Asia. The model predicted 
correctly the invasion of South America, including 
the locations that have been invaded recently 
such as the headwaters of the River Paraná. It 
showed that the Southeast of the United States 
possesses high potential for being invaded. 
Generally the model made correct forecasts but it 
was very limited to the actual presence data. 

Utilizing the South America points (Figure 
3D) there was a greater expansion of the forecast 
of areas potentially invaded in the countries of 
the Southern Hemisphere in relation to the 
previous model and reduction of the risk forecast 
for the countries of the Northern Hemisphere. 
The model also predicted occurrence in its native 
territory, China, not however demonstrating the 
invasion in Japan. 

The inclusion of all the points in the model 
(Figure 4D) also expands a little more its 
capacity of forecasting. From this simulation the 
layout of a probable route of dispersion can be 
seen, reaching the Amazon basin. This was the 
best of the three models generating an intermediate 
scenario in relation to those produced with Asia 
points or with South America points.  

MAXENT  

This was unequivocally the most restrictive 
algorithm of all (Figures 2 to 4D) and that implied 
greater adhesion between the real presence data 
and the data simulated. AUC values for this 
algorithm were between 0.970 and 0.994. 

The model generated contemplating the Asia 
data (Figure 2D) was excessively restrictive. It 
predicted correctly the occurrence of the invader 
in Asiatic areas that are currently occupied by 
the species. But its general performance tends to 
underestimate the potential of invasion, for 
example, in not forecasting the expansion of the 
species in Brazilian territory and in not fore-
casting the invasion of the River Plate region. 
The Model based on South America data (Figure 
3D) was limited to forecasting the invasion of 
South America and some few points located in 
the Asiatic region where the species is native.  

Generally the analysis for the models generated 
by the MAXENT maintained consistency with the 
models generated by the other algorithms repeating 
the sampling bias of the spatial distribution of 
the records of occurrence: models with input 
data of AMS predicted better for the Southern 
Hemisphere and models generated with the Asia 
data predicted better for the Northern Hemisphere.  

The MAXENT Model with all the occurrences, 
AMS and Asia (Figure 4D) was considered to be 
of better performance, as in addition to predicting 
correctly the occurrence in regions already known 
for the species, it was the one that expanded 
more the possibility of distribution of L. fortunei, 
reaching areas of Southeast Asia, a considerable 
part of South and Central America, in addition to 
the Southeast region of the United States. 
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Discussion 

According to Jiménez-Valverde (2012) a good 
use of species distribution models requires a clear 
distinction of the differences between potential 
and realized distributions (Soberón 2007). While 
potential distribution refers to the places where a 
species could survive and reproduce due to the 
existence of suitable environmental conditions, 
realized distribution refers to the places where a 
species actually lives. In the case of the modelling 
of invasive species for example, forecasting 
potential distribution may be the most appropriate 
approach while the estimates of realized distribution 
are more indicated for conservation studies 
(Peterson 2006). Because of this, according to 
Jiménez-Valverde (2012) different strategies, 
including data and modelling techniques, are 
required for approaching one concept or the 
other, as are the strategies used to evaluate the 
models.  

In a first analysis, taking into account only the 
AUC values obtained, all the algorithms presented 
a good degree of accuracy in their forecasts 
(AUC > 0.95). However, this tool proved 
unsatisfactory, when applied to the analysis of 
the maps generated  

According to Lobo et al. (2010) similar AUC 
scores can be obtained with predictions of the 
distribution in geographic space very different 
one from the other and hence, these measures do 
not provide reliable estimates of SDM performance.  

AUC is only truly informative when there are 
true instances of absence available and the objective 
is the estimation of the realized distribution 
(Jiménez-Valverde 2012). When the potential 
distribution is the goal of the research, the AUC 
is not an appropriate performance measure because 
the weight of commission errors is much lower 
than that of the omission errors. Thus in the case 
of potential distribution of invasive species, a 
form of validation suggested as partially possible 
by Lobo et al. (2010) would be to examine the 
success of the predictions of presences in spatial 
or temporal scenarios. 

The results generated by this work are in 
accordance with the spatial distribution portrayed 
in the prior work of Kluza and Mc Nyset (2005) 
which used only the GARP and was based on a 
different climatic and environmental database 
from that utilized in this work. The different 
algorithms employed showed that even when 
climatic macro variables are used, such tools can 
be effective, above all for an approach on a 

global scale. Aligned between themselves and 
with the preceding work, all the algorithms were 
capable of forecasting the invasion of South 
America and conversely, also indicated the 
establishment of the species in its native region, 
although with different degrees of predictive 
power and reliability. All the models indicate the 
great invasive potential that this species has, 
with the capacity to establish itself basically on 
all the continents. 

The influence of the size and origin of the 
sample of presence data on the performance of 
the algorithms is clear. Probably such differentiated 
responses between the algorithms tested reflect 
the influence of the manner in which the presence 
data are utilized by these different techniques. 

The results of this work confirm the well-
known fact that the predictive performance of 
individual spatial distribution models varies widely 
among methods and species (Poulos et al. 2012). 

The algorithms based on environmental distances 
were more flexible and generalized the area of 
potential distribution of the species when compared 
to the algorithms of the artificial intelligence 
type such as the MAXENT or GARP. These 
latter were very coincident with the input data, 
modelling the niche in a more restrictive manner 
and close to the real presence data. Within the 
set of methods used, those that characterise the 
background environment and that can differentially 
weight variables (Maxent and Garp) were more 
conservative than those that use presence data 
alone (Mahalanobis Distance, DOMAIN). 

Mainly for the potential distribution maps gene-
rated by GARP and MAXENT, it was demonstrated 
that the increase of input information related to 
real presences can improve performance and 
eliminate problems of spatial autocorrelation. In 
the majority of cases tested, the models that 
included all the records of occurrence having 
presented better performance than those that 
considered data subsets. Thus the models with 
records of occurrence only from Asia enlarge the 
risks of invasion for environments of the Northern 
Hemisphere and underestimate the risk of invasion 
for the areas of the Southern Hemisphere and the 
replies occurring when records of occurrence only 
from South America are used are in the contrary 
sense. According to Fielding and Bell (1997), 
models that utilize all the available data will be, 
on average, better than those models based on 
data subsets. Consequently, if the data are few or 
partitioned so that the size of the training set is 
smaller, there is a tendency to reduce the accuracy 
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of the model. In the present study 319 points of 
occurrence of the species in the world were 
considered, 78% of the records coming from South 
America (AMS-invaded region) and only 22% 
from Asia (AS- native region). These results 
reinforce the idea of an ideal approach proposed 
by Jimenez–Valverde et al. (2011) for the 
modelling of invasive species that would take 
into consideration all available information 
coming from native and invaded regions, as well 
as those provided by different time slices, since 
it may enhance characterization of the species’ 
fundamental niche. 

According to Jiménez-Valverde et al. (2008) 
complex techniques may be more suitable to 
model the realized distribution than simple ones, 
which may be more appropriate to estimate the 
potential distribution. Those techniques that are 
able to establish the more complex relationships 
between dependent and independent variables 
will overfit the presence data more strongly. 
Unavoidably, this will result in predicted extents 
of occurrence that are smaller than those suggested 
by simpler techniques. This fact was explicit in 
the distribution maps generated by Maxent, that 
proved to be overly adjusted to the areas of presence 
registration (Figures 2D and 3D) representing 
much more realized distribution of L. fortunei 
than its potential distribution. 

In the contrary sense, the models generated by 
the Mahalanobis Distance algorithm, generalized 
excessively the area potentially occupied by the 
species showing low capacity of discrimination 
regarding the risk of invasion of the different 
geographical regions and thus had a low degree 
of reliability. 

Considering that the focus of this study is the 
modelling of a quite aggressive invasive species 
and with ample tolerance limits to environmental 
variables, it was adjudged that very conservative 
forecasts such as those produced by MAXENT  
are not appropriate for the modelling of potential 
distribution of an invasive species. However, 
excessively flexible forecasts such as those 
generated by the environmental envelopes estimated 
by the Mahalanobis Distance, are equally ineffective 
for the focus of this work.  

For this reason the choice of the algorithm 
should be orientated by the modelling’s objective 
and the characteristics of the species. In the case 
of invading species, with wide environmental 
tolerance, more generalized replies such as those 
given by the Domain, for instance, can trace an 
interesting scenario from a more preventive 

perspective showing the whole potential of 
expansion of the invader, whereas more adjusted 
scenarios such as those portrayed by the 
MAXENT can indicate invasion hot spots for 
which priority actions and allocation of resources 
should be targeted (the realized niche). Another 
question related to potential distribution models 
refers to the fact that even in suitable conditions, 
the risk of invasion should take into account the 
accessibility to the new regions and the favourable 
inter specific relationships, aspects not considered 
by the algorithms utilized (Soberon 2007).  

We established the following classification 
according to the capacity of generalization of the 
tools: Mahalanobis Distance, Domain, GARP and 
MAXENT. Similar evaluations of the forecasting 
performance of the algorithms have already been 
obtained by other studies: MAXENToutperforms 
GARP (Phillips et al. 2006) and some presence-
only methods (e.g. DOMAIN, ENFA, Hirzel et 
al. 2002) have advantages over BIOCLIM 
(Loiselle et al. 2003).  

Ensemble maps constructed based on the 
averages and standard deviations of the best 
scenarios of the four algorithms are presented in 
Figure 5. This integrating tools permits us to 
account for the possible limitations or biases of 
any one modelling technique. As a result, this 
tends to iron out the differences and limitations 
created by different techniques and to identify 
where all the models agree in their level of 
predicted occurrence, and where they vary. This 
provided a measure of certainty in the predicted 
occurrence (Rochinni et al. 2011).  

Considering the ensemble maps, it can be seen 
from the average of the best forecasts of all the 
models, that the invasive mussel can encounter 
regions of great environmental suitability on all 
the continents, although on some areas, as the 
African continent, the deviations present a 
certain degree of variability and less reliability.  

It deserves special mention the fact that all the 
models predicted the invasion of the Southeast 
part of the United States, and the region around 
the Great Lakes which was the target of invasion 
by the mussel zebra (Dreissena polymorpha (Pallas, 
1771) - a dreissenidae bivalve with ecological 
characteristics very similar to the golden mussel. 
L. fortunei has been indicated in the literature as 
an invasive species more aggressive than D. 
polymorpha and that because of this could 
occupy the southern region of North America 
(Karatayev et al. 2007) not invaded by the first. 
The global models generated confirm this 
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invasion in the Southeast of the USA, however 
they also reveal the importance of temperature as 
a determinant factor of the area of expansion of 
L. fortunei, indicating low potential for its establish-
ment in regions with extreme temperatures 
(northern reaches, e.g. Finland and Norway).  

Considering that attachment to vessels is by 
far the most important dispersion mechanism of 
Limnoperna fortunei, Boltowskoy et al. (2006) 
suggested that the Amazon, Orinoco and Magda-
lena basins in South America are under high risk 
of invasion by this mussel, especially through 
their estuarine gateways. The ensemble map of 
the forecasts foresees high risk of invasion for 
the Amazon and Magdalena Basins, however for 
the Orinoco region, the variability of the responses 
of the algorithms was high and high environ-
mental suitability for the invader in this region 
was not confirmed. 

The average of all models also shows that the 
species currently restricted to the Plate basin on 
the South American continent, may encounter 
favourable environmental conditions for spreading 
into a substantial portion of this continent with 
the already expected impacts on the neotropical 
biota. 
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